If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+40x-560=0
a = 5; b = 40; c = -560;
Δ = b2-4ac
Δ = 402-4·5·(-560)
Δ = 12800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12800}=\sqrt{6400*2}=\sqrt{6400}*\sqrt{2}=80\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-80\sqrt{2}}{2*5}=\frac{-40-80\sqrt{2}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+80\sqrt{2}}{2*5}=\frac{-40+80\sqrt{2}}{10} $
| 3x-7+x-3=18 | | 7.12+12.3y=11.9y | | (-4)(-8)+(-4)(-7)-7p=128 | | 4-3x=2x6 | | 54-6x=+20+11x | | -13p=13-14p | | 2x-3+3x=32 | | 21+18m=28+11 | | -9v-4v-18=-10v-15 | | 10x+9=10x-4 | | −59−5x=123−12x | | 1÷3(a+9)=-12 | | 9g+1-3g+3=-8+6g | | 8/7=r+7/6 | | -18+12s=14+10s | | 20-12a+a2=0 | | 1/2(5-y)=21 | | X-7+x=7x+1-2x | | 9d-4=10d | | 5/2=9/4r | | -3r+10=-5r | | 13n+6n=67 | | -7j+8+7=-5-9j | | 5(1+4x)=-3(3-2x) | | 3x+17x-3=5(4x+7) | | -3/4x+3=-12 | | (x+9)-(4x+5)-6x=76 | | 57=12-5y | | 7-3=r=r-4(2+r) | | -5c-10=-3c+8 | | 5(2n-2)=-3(7-3n) | | 4(2x-7)=10 |